This paper is concerned with some integral type boundary value problems associated to second order singular differential equations with quasi-Laplacian on the whole line. The emphasis is put on the one-dimensional p-Laplacian term involving a nonnegative function ρ that may be singular at t = 0 and such that . A Banach space and a nonlinear completely continuous operator are defined in this paper. By using the Schauder's fixed point theorem, sufficient conditions to guarantee the existence of at least one solution are established. An example is presented to illustrate the main theorem.
Liu, Y. (2012). Solvability of boundary value problems for singular quasi-Laplacian differential equations on the whole line. Mathematical Modelling and Analysis, 17(3), 423-446. https://doi.org/10.3846/13926292.2012.686068
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.