Share:


Investigation into the hydrodynamic processes of fitting connections for determining pressure losses of transport hydraulic drive

    Mykola Karpenko Affiliation
    ; Marijonas Bogdevičius Affiliation

Abstract

The article presents the findings of theoretical and experimental research on hydraulic processes occurring in the hydraulic drives of transport machines. The paper analyses the influence of hydrodynamic processes on the flow characteristics of fluid considering different hydraulic fitting connections. The performed analysis is based on numerical simulations using Navier–Stokes equations for the velocity field. The dynamics of fluid flow in the hydraulic system has been investigated taking into account the main parameters like system flow rate in the range of 5 to 100 L/min, the diameter of the pipeline making 1/2” and fitting standards DKOL, ORFS, BSP and JIS. As a result, pressure drop, power losses, resistance and flow coefficients at different fitting connections have been obtained. The article compares the provided results with the findings given employing the calculation method for the standard of equivalent length fitting. To simulate fluid flow, a mesh independence study and turbulence calculations have been performed. Simulation results have been examined conducting physical experiments on measuring pressure losses. Each experimental research includes three measurements of connections bearing in mind each fitting standard.

Keyword : pipeline, fittings, hydrodynamics, flow coefficient, minor losses, computational fluid dynamics, fluid pressure, energy consuming, pressure losses, resistance coefficient

How to Cite
Karpenko, M., & Bogdevičius, M. (2020). Investigation into the hydrodynamic processes of fitting connections for determining pressure losses of transport hydraulic drive. Transport, 35(1), 108-120. https://doi.org/10.3846/transport.2020.12335
Published in Issue
Apr 3, 2020
Abstract Views
1142
PDF Downloads
761
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Akin, A.; Kahveci, H. S. 2019. Effect of turbulence modeling for the prediction of flow and heat transfer in rotorcraft avionics bay, Aerospace Science and Technology, 95: 105453. https://doi.org/10.1016/j.ast.2019.105453

ANSYS. 2013. ANSYS Fluent Theory Guide. Release 15.0. ANSYS, Inc. Canonsburg, PA, US. 814 p.

Biluš, I.; Škerget, L.; Predin, A.; Hriberšek, M. 2005. Experimental and numerical analyses of the cavitational flows around a hydrofoil, Strojniški vestnik – Journal of Mechanical Engineering 51(2): 103–118.

Bojko, M.; Kozubková, M. 2018. Investigation of hydraulic fitting losses, MATEC Web of Conferences 168: 02011. https://doi.org/10.1051/matecconf/201816802011

BS EN 10226-2:2005. Pipe Threads Where Pressure Tight Joints are Made on the Threads – Taper External Threads and Taper Internal Threads – Dimensions, Tolerances and Designation. British Standards Institution.

Catellani, C.; Cazzoli, G.; Falfari, S.; Forte, C.; Bianchi, G. M. 2016. Large eddy simulation of a steady flow test bench using OpenFOAM®, Energy Procedia 101: 622–629. https://doi.org/10.1016/j.egypro.2016.11.079

Crane Co. 1982. Flow of Fluids: Through Valves, Fittings, and Pipe. Metric Edition. Technical Paper No 410 M. Crane Co, New York, 133 p.

De Moraes, M. S.; Torneiros, D. L. M.; Da Silva Rosa, V.; Higa, J. S.; De Castro, Y. R.; Santos, A. R.; De Almeida Coelho, N. M.; De Moraes Júnior, D. 2017. Experimental quantification of the head loss coefficient K for fittings and semi-industrial pipe cross section solid concentration profile in pneumatic conveying of polypropylene pellets in dilute phase, Powder Technology 310: 250–263. https://doi.org/10.1016/j.powtec.2017.01.039

DIN 20066:2016. Hydraulic Fluid Power – Hose Assemblies – Dimensions, Requirements. German Institute for Standardisation.

DIN 51524-2:2016. Pressure Fluids – Hydraulic Oils – Part 2: HLP Hydraulic Oils, Minimum Requirements. German Institute for Standardisation.

Foias, C.; Manley, O.; Rosa, R.; Temam, R. 2001. Navier-Stokes Equations and Turbulence. Cambridge University Press. 364 p.

Gai, Y.; Kimiabeigi, M.; Chong, Y. C.; Widmer, J. D.; Deng, X.; Popescu, M.; Goss, J.; Staton, D. A.; Steven, A. 2019. Cooling of automotive traction motors: schemes, examples, and computation methods, IEEE Transactions on Industrial Electronics 66(3): 1681–1692. https://doi.org/10.1109/TIE.2018.2835397

Han, H.-Z.; Li, B.-X.; Li, F.-C.; He, Y.-R. 2014. RST model for turbulent flow and heat transfer mechanism in an outward convex corrugated tube, Computers & Fluids 91: 107–129. https://doi.org/10.1016/j.compfluid.2013.12.012

JIS B 8363:2015. End Fittings and Adapters for Hydraulic Hose Assemblies. Japanese Standards Association.

Karpenko, M.; Bogdevičius, M. 2018. Investigation of hydrodynamic processes in the system – “axial piston pumps – pipeline – fittings”, in Transport Problems 2018: VII International Symposium of Young Researchers, 25–26 June 2018, Katowice, Poland, 832–843.

Karpenko, M.; Bogdevičius, M. 2020. Investigation of hydrodynamic processes in the system – “pipeline–fittings”, in K. Gopalakrishnan, O. Prentkovskis, I. Jackiva, R. Junevičius (Eds.). TRANSBALTICA XI: Transportation Science and Technology. TRANSBALTICA 2019. Lecture Notes in Intelligent Transportation and Infrastructure, 331–340. https://doi.org/10.1007/978-3-030-38666-5_35

Khalizadeh, A.; Ge, H.; Ng, H. D. 2019. Effect of turbulence modeling schemes on wind-driven rain deposition on a mid-rise building: CFD modeling and validation, Journal of Wind Engineering and Industrial Aerodynamics 184: 362–377. https://doi.org/10.1016/j.jweia.2018.11.012

Launder, B.; Spalding, D. 1972. Lectures in Mathematical Models of Turbulence. Academic Press. 169 p.

Li, D.; Fu, X.; Zuo, Z.; Wang, H.; Li, Z.; Liu, S.; Wei, X. 2019. Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems – a review, Renewable and Sustainable Energy Reviews 101: 26–46. https://doi.org/10.1016/j.rser.2018.10.023

Lisowski, E.; Panek, M. 2004. Modelowanie metodą CFD pracy łopatek w pompie łopatkowej, Eksploatacja i Niezawodność – Maintenance and Reliability (2): 36–41. (in Polish).

Liu, H.; Zhang, X.; Quan, L.; Zhang, H. 2020. Research on energy consumption of injection molding machine driven by five different types of electro-hydraulic power units, Journal of Cleaner Production 242: 118355. https://doi.org/10.1016/j.jclepro.2019.118355

Nishimura, S.; Matsunaga, T. 2000. Analysis of response lag in hydraulic power steering system, JSAE Review 21(1): 41–46. https://doi.org/10.1016/S0389-4304(99)00059-4

Pechánek, R. Bouzek, L. 2012. Analyzing of two types water cooling electric motors using computational fluid dynamics, in 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), 4–6 September 2012, Novi Sad, Serbia, LS2e.4-1–LS2e.4-5. https://doi.org/10.1109/EPEPEMC.2012.6397424

Rodrigues Santos, F.; Brito, A. A.; De Castro, A. P. N.; Almeida, M. P.; Da Cunha Lima, A. T.; Zebende, G. F.; da Cunha Lima, I. C. 2018. Detection of the persistency of the blockages symmetry influence on the multi-scale cross-correlations of the velocity fields in internal turbulent flows in pipelines, Physica A: Statistical Mechanics and its Applications 509: 294–301. https://doi.org/10.1016/j.physa.2018.06.009

SAE J1453/3_201206. 2012. Specification for O-Ring Face Seal Connectors: Part 3 – Requirements, Dimensions, and Tests for Steel Unions, Bulkheads, Swivels, Braze Sleeves, Caps, and Connectors with SAE J1926-2 Inch Stud Ends. Society of Automotive Engineers (SAE) International.

San Andres, U.; Almandoz, G.; Poza, J.; Ugalde, G. 2014. Design of cooling systems using computational fluid dynamics and analytical thermal models, IEEE Transactions on Industrial Electronics 61(8): 4383–4391. https://doi.org/10.1109/TIE.2013.2286081

Savkiv, V.; Mykhailyshyn, R.; Maruschak, P.; Chovanec, L.; Prada, E.; Virgala, I.; Prentkovskis, O. 2019. Optimization of design parameters of Bernoulli gripper with an annular nozzle, in Transport Means 2019: Sustainability: Research and Solu-tions: Proceedings of the 23rd International Scientific Conference, 2–4 October 2019, Palanga, Lithuania, 423–428.

Tič, V.; Lovrec, D. 2012. Design of modern hydraulic tank using fluid flow simulation, International Journal of Simulation Modelling 11(2): 77–88. https://doi.org/10.2507/IJSIMM11(2)2.202

Valdés, J. R.; Rodríguez, J. M.; Saumell, J.; Pütz, T. 2014. A methodology for the parametric modelling of the flow coefficients and flow rate in hydraulic valves, Energy Conversion and Management 88: 598–611. https://doi.org/10.1016/j.enconman.2014.08.057

Yan, X.; Chen, B.; Zhang, D.; Wu, C.; Luo, W. 2019. An energy-saving method to reduce the installed power of hydraulic press machines, Journal of Cleaner Production 233: 538–545. https://doi.org/10.1016/j.jclepro.2019.06.084