Share:


Nonparametric numerical approaches to probability weighting function construct for manifestation and prediction of risk preferences

    Sheng Wu Affiliation
    ; Zhen-Song Chen Affiliation
    ; Witold Pedrycz Affiliation
    ; Kannan Govindan Affiliation
    ; Kwai-Sang Chin Affiliation

Abstract

Probability weighting function (PWF) is the psychological probability of a decision-maker for objective probability, which reflects and predicts the risk preferences of decision-maker in behavioral decisionmaking. The existing approaches to PWF estimation generally include parametric methodologies to PWF construction and nonparametric elicitation of PWF. However, few of them explores the combination of parametric and nonparametric elicitation approaches to approximate PWF. To describe quantitatively risk preferences, the Newton interpolation, as a well-established mathematical approximation approach, is introduced to task-specifically match PWF under the frameworks of prospect theory and cumulative prospect theory with descriptive psychological analyses. The Newton interpolation serves as a nonparametric numerical approach to the estimation of PWF by fitting experimental preference points without imposing any specific parametric form assumptions. The elaborated nonparametric PWF model varies in accordance with the number of the experimental preference points elicitation in terms of its functional form. The introduction of Newton interpolation to PWF estimation into decision-making under risk will benefit to reflect and predict the risk preferences of decision-makers both at the aggregate and individual levels. The Newton interpolation-based nonparametric PWF model exhibits an inverse S-shaped PWF and obeys the fourfold pattern of decision-makers’ risk preferences as suggested by previous empirical analyses.


First published online 17 April 2023

Keyword : probability weighting function, risk preference, nonparametric numerical approach, Newton interpolation, preference points, decision-making under risk

How to Cite
Wu, S., Chen, Z.-S., Pedrycz, W., Govindan, K., & Chin, K.-S. (2023). Nonparametric numerical approaches to probability weighting function construct for manifestation and prediction of risk preferences. Technological and Economic Development of Economy, 29(4), 1127–1167. https://doi.org/10.3846/tede.2023.18551
Published in Issue
Jul 14, 2023
Abstract Views
645
PDF Downloads
620
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abdellaoui, M. (2000). Parameter-free elicitation of utility and PWFs. Management Science, 46(11), 1497–1512. https://doi.org/10.1287/mnsc.46.11.1497.12080

Abdellaoui, M., Bleichrodt, H., & L’Haridon, O. (2008). A tractable method to measure utility and loss aversion under prospect theory. Journal of Risk and Uncertainty, 36(3), 245–266. https://doi.org/10.1007/s11166-008-9039-8

Abdellaoui, M., Bleichrodt, H., & Paraschiv, C. (2007). Loss aversion under prospect theory: A parameter-free measurement. Management Science, 53(10), 1659–1674. https://doi.org/10.1287/mnsc.1070.0711

Abdellaoui, M., L’Haridon, O., & Zank, H. (2010). Separating curvature and elevation: A parametric PWF. Journal of Risk and Uncertainty, 41(1), 39–65. https://doi.org/10.1007/s11166-010-9097-6

Abdellaoui, M., Vossmann, F., & Weber, M. (2005). Choice-based elicitation and decomposition of decision weights for gains and losses under uncertainty. Management Science, 51(9), 1384–1399. https://doi.org/10.1287/mnsc.1050.0388

Al‐Nowaihi, A., & Dhami, S. (2010). Probability Weighting Functions. In Wiley encyclopedia of operations research and management science. John Wiley & Sons. https://doi.org/10.1002/9780470400531.eorms0681

Baillon, A., Bleichrodt, H., Emirmahmutoglu, A., Jaspersen, J., & Peter, R. (2022). When risk perception gets in the way: Probability weighting and underprevention. Operations Research, 70(3), 1371–1392. https://doi.org/10.1287/opre.2019.1910

Barberis, N. (2018). Psychology-based models of asset prices and trading volume. In Handbook of behavioral economics: Applications and foundations 1 (pp. 79–175). Elsevier B.V. https://doi.org/10.1016/bs.hesbe.2018.07.001

Bernheim, B. D., & Sprenger, C. (2020). On the empirical validity of cumulative prospect theory: Experimental evidence of rankindependent probability weighting. Econometrica, 88(4), 1363–1409. https://doi.org/10.3982/ECTA16646

Blanco-Mesa, F., Merigó, J. M., & Gil-Lafuente, A. M. (2017). Fuzzy decision making: A bibliometric-based review. Journal of Intelligent & Fuzzy Systems, 32(3), 2033–2050. https://doi.org/10.3233/JIFS-161640

Blavatskyy, P. (2006). Error propagation in the elicitation of utility and probability weighting functions. Theory and Decision, 60(2–3), 315–334. https://doi.org/10.1007/s11238-005-4593-x

Bleichrodt, H., & Pinto, J. L. (2000). A parameter-free elicitation of the PWF in medical decision analysis. Management Science, 46(11), 1485–1496. https://doi.org/10.1287/mnsc.46.11.1485.12086

Booij, A. S., & Van de Kuilen, G. (2009). A parameter-free analysis of the utility of money for the general population under prospect theory. Journal of Economic Psychology, 30(4), 651–666. https://doi.org/10.1016/j.joep.2009.05.004

Brandstätter, E., Kühberger, A., & Schneider, F. (2002). A cognitive-emotional account of the shape of the probability weighting function. Journal of Behavioral Decision Making, 15(2), 79–100. https://doi.org/10.1002/bdm.404

Camerer, C. F., & Ho, T.-H. (1994). Violations of the betweenness axiom and nonlinearity in probability. Journal of Risk and Uncertainty, 8(2), 167–196. https://doi.org/10.1007/BF01065371

Carnahan, B., Luther, H. A., & Wilkes, J. O. (1969). Applied numerical methods. Wiley New York. https://doi.org/10.1002/aic.690160604

Cavagnaro, D. R., Pitt, M. A., Gonzalez, R., & Myung, J. I. (2013). Discriminating among PWFs using adaptive design optimization. Journal of Risk and Uncertainty, 47(3), 255–289. https://doi.org/10.1007/s11166-013-9179-3

Chateauneuf, A., Eichberger, J., & Grant, S. (2007). Choice under uncertainty with the best and worst in mind: Neo-additive capacities. Journal of Economic Theory, 137(1), 538–567. https://doi.org/10.1016/j.jet.2007.01.017

Chen, Z.-S., Zhang, X., Govindan, K., Wang, X.-J., & Chin, K.-S. (2021). Third-party reverse logistics provider selection: A computational semantic analysis-based multi-perspective multi-attribute decision-making approach. Expert Systems with Applications, 166, 114051. https://doi.org/10.1016/j.eswa.2020.114051

Chen, Z.-S., Zhang, X., Rodriguez, R. M., Pedrycz, W., Martinez, L., & Skibniewski, M. J. (2022). Expertise-structure and risk-appetite-integrated two-tiered collective opinion generation framework for large scale group decision making. IEEE Transactions on Fuzzy Systems, 30(12), 5496–5510. https://doi.org/10.1109/TFUZZ.2022.3179594

Croson, R., & Gneezy, U. (2009). Gender differences in preferences. Journal of Economic Literature, 47(2), 448–474. https://doi.org/10.1257/jel.47.2.448

Diecidue, E., Schmidt, U., & Zank, H. (2009). Parametric weighting functions. Journal of Economic Theory, 144(3), 1102–1118. https://doi.org/10.1016/j.jet.2008.10.004

Farquhar, P. H. (1984). State of the art – Utility assessment methods. Management Science, 30(11), 1283–1300. https://doi.org/10.1287/mnsc.30.11.1283

Gonzalez, R. (1993). Estimating the weighting function [Conference presentation]. 26th Annual Mathematical Psychology Meeting.

Gonzalez, R., & Wu, G. (1999). On the shape of the PWF. Cognitive Psychology, 38(1), 129–166. https://doi.org/10.1006/cogp.1998.0710

Hershey, J. C., & Schoemaker, P. J. (1985). Probability versus certainty equivalence methods in utility measurement: Are they equivalent? Management Science, 31(10), 1213–1231. https://doi.org/10.1287/mnsc.31.10.1213

Hong, C. S., & Waller, W. S. (1986). Empirical tests of weighted utility theory. Journal of Mathematical Psychology, 30(1), 55–72. https://doi.org/10.1016/0022-2496(86)90042-8

Huang, Y., Lin, R., & Chen, X. (2021). An enhancement EDAS method based on prospect theory. Technological and Economic Development of Economy, 27(5), 1019–1038. https://doi.org/10.3846/tede.2021.15038

Jiang, W. H., Xu, L., Chen, Z. S., Govindan, K., & Chin, K. S. (2022). Financing equilibrium in a capital constrained supply Chain: The impact of credit rating. Transportation Research Part E: Logistics and Transportation Review, 157, 102559. https://doi.org/10.1016/j.tre.2021.102559

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291. https://doi.org/10.2307/1914185

Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39(4), 341–350. https://doi.org/10.1037/0003-066X.39.4.341

Kilka, M., & Weber, M. (2001). What determines the shape of the PWF under uncertainty? Management Science, 47(12), 1712–1726. https://doi.org/10.1287/mnsc.47.12.1712.10239

Krzysztofowicz, R. (1983). Strength of preference and risk attitude in utility measurement. Organizational Behavior and Human Performance, 31(1), 88–113. https://doi.org/10.1016/0030-5073(83)90114-9

Kahneman, D., & Tversky, A. (2013). Prospect theory: An analysis of decision under risk. In World scientific handbook in financial economics series: Vol. 4. Handbook of the fundamentals of financial decision making: Part I (pp. 99–127). World Scientific. https://doi.org/10.1142/9789814417358_0006

Lattimore, P. K., Baker, J. R., & Witte, A. D. (1992). The influence of probability on risky choice: A parametric examination. Journal of Economic Behavior and Organization, 17(3), 377–400. https://doi.org/10.1016/S0167-2681(95)90015-2

Luce, R. D., & Fishburn, P. C. (1991). Rank- and sign-dependent linear utility models for finite first-order gambles. Journal of Risk and Uncertainty, 4(1), 29–59. https://doi.org/10.1007/BF00057885

Petrova, D. G., Pligt, J., & Garcia-Retamero, R. (2014). Feeling the numbers: On the interplay between risk, affect, and numeracy. Journal of Behavioral Decision Making, 27(3), 191–199. https://doi.org/10.1002/bdm.1803

Prelec, D. (1998) The Probability Weighting Function. Econometrica, 66(3), 497–527. https://doi.org/10.2307/2998573

Rieger, M. O., Wang, M., & Hens, T. (2015). Risk preferences around the world. Management Science, 61(3), 637–648. https://doi.org/10.1287/mnsc.2013.1869

Roussanov, N., & Savor, P. (2014). Marriage and managers’ attitudes to risk. Management Science, 60(10), 2496–2508. https://doi.org/10.1287/mnsc.2014.1926

Ruggeri, K., Alí, S., Berge, M. L., Bertoldo, G., Bjørndal, L. D., Cortijos-Bernabeu, A., Davison, C., Demić, E., Esteban-Serna, C., Friedemann, M., Gibson, S. P., Jarke, H., Karakasheva, R., Khorrami, P. R., Kveder, J., Andersen, T. L., Lofthus, I. S., McGill, L., Nieto, A. E., … Folke, T. (2020). Replicating patterns of prospect theory for decision under risk. Nature Human Behaviour, 4, 622–633. https://doi.org/10.1038/s41562-020-0886-x

Schmidt, U., & Zank, H. (2005). What is loss aversion? Journal of Risk and Uncertainty, 30(2), 157–167. https://doi.org/10.1007/s11166-005-6564-6

Scholten, M., & Read, D. (2014). Prospect theory and the “forgotten” fourfold pattern of risk preferences. Journal of Risk and Uncertainty, 48(1), 67–83. https://doi.org/10.1007/s11166-014-9183-2

Starmer, C. (2000). Developments in non-expected utility theory: The hunt for a descriptive theory of choice under risk. Journal of Economic Literature, 38(2), 332–382. https://doi.org/10.1257/jel.38.2.332

Stewart, N., Reimers, S., & Harris, A. J. (2015). On the origin of utility, weighting, and discounting functions: How they get their shapes and how to change their shapes. Management Science, 61(3), 687–705. https://doi.org/10.1287/mnsc.2013.1853

Tanaka, T., Camerer, C. F., & Nguyen, Q. (2010). Risk and time preferences: Linking experimental and household survey data from Vietnam. American Economic Review, 100(1), 557–571. https://doi.org/10.1257/aer.100.1.557

Toubia, O., Johnson, E., Evgeniou, T., & Delquié, P. (2013). Dynamic experiments for estimating preferences: An adaptive method of eliciting time and risk parameters. Management Science, 59(3), 613–640. https://doi.org/10.1287/mnsc.1120.1570

Tversky, A., & Fox, C. R. (1995). Weighting risk and uncertainty. Psychological Review, 102(2), 269–283. https://doi.org/10.1037/0033-295X.102.2.269

Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323. https://doi.org/10.1007/BF00122574

Tversky, A., & Wakker, P. (1995). Risk attitudes and decision weights. Econometrica, 63(6), 1255–1280. https://www.jstor.org/stable/2171769

Van Houtven, G., Johnson, F. R., Kilambi, V., & Hauber, A. B. (2011). Eliciting benefit–risk preferences and probability-weighted utility using choice-format conjoint analysis. Medical Decision Making, 31(3), 469–480. https://doi.org/10.1177/0272989X10386116

Van Ryzin, G., & Vulcano, G. (2015). A market discovery algorithm to estimate a general class of nonparametric choice models. Management Science, 61(2), 281–300. https://doi.org/10.1287/mnsc.2014.2040

Von Gaudecker, H.-M., van Soest, A., & Wenström, E. (2011). Heterogeneity in risky choice behavior in a broad population. American Economic Review, 101(2), 664–694. https://doi.org/10.1257/aer.101.2.664

Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University Press. https://www.jstor.org/stable/2771403

Wakker, P., & Deneffe, D. (1996). Eliciting von Neumann-Morgenstern utilities when probabilities are distorted or unknown. Management Science, 42(8), 1131–1150. https://doi.org/10.1287/mnsc.42.8.1131

Walther, M., & Munster, M. (2021). Conditional risk premiums and the value function of prospect theory. Journal of Behavioral Finance, 22(1), 74–83. https://doi.org/10.1080/15427560.2020.1735390

Wang, T., Li, H., Zhang, L., Zhou, X., & Huang, B. (2020). A three-way decision model based on cumulative prospect theory. Information Sciences, 519, 74–92. https://doi.org/10.1016/j.ins.2020.01.030

Wang, T.-Y., Chen, Z.-S., He, P., Govindan, K., & Skibniewski, M. J. (2023). Alliance strategy in an online retailing supply chain: Motivation, choice, and equilibrium. Omega, 115, 102791. https://doi.org/10.1016/j.omega.2022.102791

Wu, G., & Gonzalez, R. (1996). Curvature of the PWF. Management Science, 42(12), 1676–1690. https://doi.org/10.1287/mnsc.42.12.1676

Wu, G., & Gonzalez, R. (1999). Nonlinear decision weights in choice under uncertainty. Management Science, 45(1), 74–85. https://doi.org/10.1287/mnsc.45.1.74

Wu, S., Huang, H.-W., Li, Y.-L., Chen, H., & Pan, Y. (2021). A novel probability weighting function model with empirical studies. International Journal of Computational Intelligence Systems, 14(1), 208–227. https://doi.org/10.2991/ijcis.d.201120.001

Yang, Q., Chen, Z. S., Chan, C. Y., Pedrycz, W., Martínez, L., & Skibniewski, M. J. (2022). Large-scale group decision-making for prioritizing engineering characteristics in quality function deployment under comparative linguistic environment. Applied Soft Computing, 127, 109359. https://doi.org/10.1016/j.asoc.2022.109359

Yu, D., Sheng, L., & Xu, Z. (2022). Analysis of evolutionary process in intuitionistic fuzzy set theory: A dynamic perspective. Information Sciences, 601, 175–188. https://doi.org/10.1016/j.ins.2022.04.019

Yu, D., Wang, W., Zhang, W., & Zhang, S. (2018). A bibliometric analysis of research on multiple criteria decision making. Current Science, 114(4), 747–758. https://doi.org/10.18520/cs/v114/i04/747-758