Share:


EDAS method for multiple criteria group decision making with picture fuzzy information and its application to green suppliers selections

    Siqi Zhang Affiliation
    ; Guiwu Wei Affiliation
    ; Hui Gao Affiliation
    ; Cun Wei Affiliation
    ; Yu Wei Affiliation

Abstract

In this paper, we construct picture fuzzy EDAS model based on traditional EDAS (Evaluation based on Distance from Average Solution) model. Firstly, we briefly review the definition of picture fuzzy sets (PFSs) and introduce the score function, accuracy function and operational laws of picture fuzzy numbers (PFNs). Then, we combine traditional EDAS model for MCGDM with PFNs. In our model, it’s more accuracy and effective for considering the conflicting attributes. Finally, a numerical example for green supplier selection has been given to illustrate this new model and some comparisons between EDAS model with PFNs and PFWA, PFWG aggregation operators are also conducted to further illustrate advantages of the new method.


First published online 23 August 2019

Keyword : multiple criteria group decision making (MCGDM) problems, picture fuzzy sets (PFSs), EDAS model, picture fuzzy weighted average (PFWA) operator, picture fuzzy weighted geometric (PFWG) operator, picture fuzzy EDAS model, green supplier selection

How to Cite
Zhang, S., Wei, G., Gao, H., Wei, C., & Wei, Y. (2019). EDAS method for multiple criteria group decision making with picture fuzzy information and its application to green suppliers selections. Technological and Economic Development of Economy, 25(6), 1123-1138. https://doi.org/10.3846/tede.2019.10714
Published in Issue
Aug 23, 2019
Abstract Views
3246
PDF Downloads
1944
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Atanassov, K., & Gargov, G. (1989). Interval valued intuitionistic fuzzy-sets. Fuzzy Sets and Systems, 31, 343-349. https://doi.org/10.1016/0165-0114(89)90205-4

Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3

Atanassov, K. T. (1994). Operators over interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 64, 159-174. https://doi.org/10.1016/0165-0114(94)90331-X

Aydin, S. (2018). Augmented reality goggles selection by using neutrosophic MULTIMOORA method. Journal of Enterprise Information Management, 31, 565-576. https://doi.org/10.1108/JEIM-01-2018-0023

Chen, N., & Xu, Z. S. (2015). Hesitant fuzzy ELECTRE II approach: A new way to handle multi-criteria decision making problems. Information Sciences, 292, 175-197. https://doi.org/10.1016/j.ins.2014.08.054

Chen, S. M., Yang, M. W., Yang, S. W., Sheu, T. W., & Liau, C. J. (2012). Multicriteria fuzzy decision making based on interval-valued intuitionistic fuzzy sets. Expert Systems with Applications, 39, 12085-12091. https://doi.org/10.1016/j.eswa.2012.04.021

Cuong, B. C., & Kreinovich, V. (2013). Picture Fuzzy Sets – a new concept for computational intelligence problems. IEEE. https://doi.org/10.1109/WICT.2013.7113099

Deng, X. M., Wei, G. W., Gao, H., & Wang, J. (2018). Models for Safety Assessment of Construction Project With Some 2-Tuple Linguistic Pythagorean Fuzzy Bonferroni Mean Operators. IEEE Access, 6, 52105-52137. https://doi.org/10.1109/ACCESS.2018.2869414

Ecer, F. (2018). Third-party logistics (3PLS) provider selection via fuzzy ahp and EDAS integrated model. Technological and Economic Development of Economy, 24, 615-634. https://doi.org/10.3846/20294913.2016.1213207

Feng, X. Q., Wei, C. P., & Liu, Q. (2018). EDAS method for extended hesitant fuzzy linguistic multicriteria decision making. International Journal of Fuzzy Systems, 20, 2470-2483. https://doi.org/10.1007/s40815-018-0504-5

Gao, H. (2018). Pythagorean fuzzy Hamacher Prioritized aggregation operators in multiple attribute decision making. Journal of Intelligent & Fuzzy Systems, 35, 2229-2245. https://doi.org/10.3233/JIFS-172262

Gao, H., Lu, M., Wei, G. W., & Wei, Y. (2018). Some novel pythagorean fuzzy interaction aggregation operators in multiple attribute decision making. Fundamenta Informaticae, 159, 385-428. https://doi.org/10.3233/FI-2018-1669

Hajlaoui, S., & Halouani, N. (2013). Hesitant-Fuzzy-Promethee method. In 2013 5th International Conference on Modeling, Simulation and Applied Optimization. https://doi.org/10.1109/ICMSAO.2013.6552710

Huang, Y. H., & Wei, G. W. (2018). TODIM method for Pythagorean 2-tuple linguistic multiple attribute decision making. Journal of Intelligent & Fuzzy Systems, 35, 901-915. https://doi.org/10.3233/JIFS-171636

Hung, W. L., & Yang, M. S. (2004). Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance. Pattern Recognition Letters, 25, 1603-1611. https://doi.org/10.1016/j.patrec.2004.06.006

Ilieva, G. (2018). Group Decision Analysis Algorithms with EDAS for Interval Fuzzy Sets. Cybernetics and Information Technologies, 18, 51-64. https://doi.org/10.2478/cait-2018-0027

Ji, P., Zhang, H. Y., & Wang, J. Q. (2018). A projection-based TODIM method under multi-valued neutrosophic environments and its application in personnel selection. Neural Computing & Applications, 29, 221-234. https://doi.org/10.1007/s00521-016-2436-z

Kahraman, C., Keshavarz Ghorabaee, M., Zavadskas, E. K., Onar, S. C., Yazdani, M., & Oztaysi, B. (2017). Intuitionistic fuzzy EDAS method: An application to solid waste disposal site selection. Journal of Environmental Engineering and Landscape Management, 25, 1-12. https://doi.org/10.3846/16486897.2017.1281139

Karasan, A., & Kahraman, C. (2018a). Interval-Valued Neutrosophic Extension of EDAS Method. In J. Kacprzyk, E. Szmidt, S. Zadrozny, K. T. Atanassov & M. Krawczak (Eds.), Advances in Fuzzy Logic and Technology 2017, (Vol. 642, pp. 343-357). https://doi.org/10.1007/978-3-319-66824-6_31

Karasan, A., & Kahraman, C. (2018b). A novel interval-valued neutrosophic EDAS method: prioritization of the United Nations national sustainable development goals. Soft Computing, 22, 4891-4906. https://doi.org/10.1007/s00500-018-3088-y

Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018a). A comparative analysis of the rank reversal phenomenon in the EDAS and TOPSIS methods. Economic Computation and Economic Cybernetics Studies and Research, 52, 121-134. https://doi.org/10.24818/18423264/52.3.18.08

Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018b). A Dynamic Fuzzy Approach Based on the EDAS Method for multi-criteria subcontractor evaluation. Information, 9, 68. https://doi.org/10.3390/info9030068

Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., & Turskis, Z. (2017). Multi-criteria group decision-making using an extended edas method with interval type-2 fuzzy sets. E & M Ekonomie a Management, 20, 48-68. https://doi.org/10.15240/tul/001/2017-1-004

Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2017a). A new multi-criteria model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation and order allocation with environmental considerations. Computers & Industrial Engineering, 112, 156-174. https://doi.org/10.1016/j.cie.2017.08.017

Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2017b). Stochastic EDAS method for multi-criteria decision-making with normally distributed data. Journal of Intelligent & Fuzzy Systems, 33, 1627-1638. https://doi.org/10.3233/JIFS-17184

Keshavarz Ghorabaee, M., Zavadskas, E. K., Amiri, M., & Turskis, Z. (2016). Extended EDAS method for fuzzy multi-criteria decision-making: An application to supplier selection. International Journal of Computers Communications & Control, 11, 358-371. https://doi.org/10.15837/ijccc.2016.3.2557

Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26, 435-451. https://doi.org/10.15388/Informatica.2015.57

Li, D. F. (2004). Some measures of dissimilarity in intuitionistic fuzzy structures. Journal of Computer and System Sciences, 68, 115-122. https://doi.org/10.1016/j.jcss.2003.07.006

Li, Z. X., Wei, G. W., & Lu, M. (2018). Pythagorean fuzzy hamy mean operators in multiple attribute group decision making and their application to supplier selection. Symmetry-Basel, 10. https://doi.org/10.3390/sym10100505

Liao, H. C., Si, G. S., Xu, Z. S., & Fujita, H. (2018). Hesitant fuzzy linguistic preference utility set and its application in selection of fire rescue plans. International Journal of Environmental Research and Public Health, 15. https://doi.org/10.3390/ijerph15040664

Liao, H. C., & Xu, Z. S. (2014). Multi-criteria decision making with intuitionistic fuzzy PROMETHEE. Journal of Intelligent & Fuzzy Systems, 27, 1703-1717.

Liu, H. C., Liu, L., & Wu, J. (2013). Material selection using an interval 2-tuple linguistic VIKOR method considering subjective and objective weights. Materials & Design, 52, 158-167. https://doi.org/10.1016/j.matdes.2013.05.054

Liu, H. C., You, J. X., Lu, C., & Shan, M. M. (2014). Application of interval 2-tuple linguistic MULTIMOORA method for health-care waste treatment technology evaluation and selection. Waste Management, 34, 2355-2364. https://doi.org/10.1016/j.wasman.2014.07.016

Muirhead, R. F. (1902). Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters. Proceedings of the Edinburgh Mathematical Society, 21, 144-162. https://doi.org/10.1017/S001309150003460X

Peng, J. J., Wang, J. Q., & Wu, X. H. (2017). An extension of the ELECTRE approach with multi-valued neutrosophic information. Neural Computing & Applications, 28, S1011-S1022. https://doi.org/10.1007/s00521-016-2411-8

Peng, X. D., & Liu, C. (2017). Algorithms for neutrosophic soft decision making based on EDAS, new similarity measure and level soft set. Journal of Intelligent & Fuzzy Systems, 32, 955-968. https://doi.org/10.3233/JIFS-161548

Qin, Q. D., Liang, F. Q., Li, L., Chen, Y. W., & Yu, G. F. (2017). A TODIM-based multi-criteria group decision making with triangular intuitionistic fuzzy numbers. Applied Soft Computing, 55, 93-107. https://doi.org/10.1016/j.asoc.2017.01.041

Ren, Z. L., Xu, Z. S., Wang, H., & Ieee. (2017). An extended TODIM method under probabilistic dual hesitant fuzzy information and its application on enterprise strategic assessment. In 2017 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 1464-1468). https://doi.org/10.1109/IEEM.2017.8290136

Sennaroglu, B., Yilmazer, K. B., Tuzkaya, G., & Tuzkaya, U. R. (2018). A DEMATEL integrated interval valued intuitionistic fuzzy PROMETHEE approach for parking lots evaluation. Journal of MultipleValued Logic and Soft Computing, 30, 177-198.

Singh, P. (2015). Correlation coefficients for picture fuzzy sets. Journal of Intelligent & Fuzzy Systems, 28, 591-604.

Son, L. H. (2015). DPFCM: A novel distributed picture fuzzy clustering method on picture fuzzy sets. Expert Systems with Applications, 42, 51-66. https://doi.org/10.1016/j.eswa.2014.07.026

Son, L. H. (2017). Measuring analogousness in picture fuzzy sets: from picture distance measures to picture association measures. Fuzzy Optimization and Decision Making, 16, 359-378. https://doi.org/10.1007/s10700-016-9249-5

Son, L. H., & Thong, P. H. (2017). Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences. Applied Intelligence, 46, 1-15. https://doi.org/10.1007/s10489-016-0811-1

Stevic, Z., Vasiljevic, M., Zavadskas, E. K., Sremac, S., & Turskis, Z. (2018). Selection of carpenter manufacturer using fuzzy EDAS method. Inzinerine Ekonomika-Engineering Economics, 29, 281290. https://doi.org/10.5755/j01.ee.29.3.16818

Szmidt, E., & Kacprzyk, J. (2004). A similarity measure for intuitionistic fuzzy sets and its application in supporting medical diagnostic reasoning. In L. Rutkowski, J. Siekmann, R. Tadeusiewicz & L. A. Zadeh (Eds.), Artificial Intelligence and Soft Computing – ICAISC 2004 (Vol. 3070, pp. 388393). https://doi.org/10.1007/978-3-540-24844-6_56

Tang, M., Wang, J., Lu, J. P., Wei, G. W., Wei, C., & Wei, Y. (2019). Dual hesitant pythagorean fuzzy heronian mean operators in multiple attribute decision making. Mathematics, 7, 344. https://doi.org/10.3390/math7040344

Tang, X. Y., Wei, G. W., & Gao, H. (2019). Models for multiple attribute decision making with intervalvalued pythagorean fuzzy muirhead mean operators and their application to green suppliers selection. Informatica, 30, 153-186. https://doi.org/10.15388/Informatica.2018.202

Thong, N. T., & Son, L. H. (2015). HIFCF: An effective hybrid model between picture fuzzy clustering and intuitionistic fuzzy recommender systems for medical diagnosis. Expert Systems with Applications, 42, 3682-3701. https://doi.org/10.1016/j.eswa.2014.12.042

Thong, P. H., & Son, L. H. (2016). A novel automatic picture fuzzy clustering method based on particle swarm optimization and picture composite cardinality. Knowledge-Based Systems, 109, 48-60. https://doi.org/10.1016/j.knosys.2016.06.023

Wan, S. P., Li, S. Q., & Dong, J. Y. (2018). A three-phase method for Pythagorean fuzzy multi-attribute group decision making and application to haze management. Computers & Industrial Engineering, 123, 348-363. https://doi.org/10.1016/j.cie.2018.07.005

Wang, J., Wei, G. W., & Lu, M. (2018). An extended VIKOR method for multiple criteria group decision making with triangular fuzzy neutrosophic numbers. Symmetry-Basel, 10, 497. https://doi.org/10.3390/sym10100497

Wei, G. W. (2016). Picture fuzzy cross-entropy for multiple attribute decision making problems. Journal of Business Economics and Management, 17, 491-502. https://doi.org/10.3846/16111699.2016.1197147

Wei, G. W. (2017a). Picture fuzzy aggregation operators and their application to multiple attribute decision making. Journal of Intelligent & Fuzzy Systems, 33, 713-724. https://doi.org/10.3233/JIFS-161798

Wei, G. W. (2017b). Picture uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Kybernetes, 46, 1777-1800. https://doi.org/10.1108/K-01-2017-0025

Wei, G. W. (2017c). Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making. Informatica, 28, 547-564. https://doi.org/10.15388/Informatica.2017.144

Wei, G. W. (2018a). Picture fuzzy hamacher aggregation operators and their application to multiple attribute decision making. Fundamenta Informaticae, 157, 271-320. https://doi.org/10.3233/FI-2018-1628

Wei, G. W. (2018b). Some similarity measures for picture fuzzy sets and their applications. Iranian Journal of Fuzzy Systems, 15, 77-89.

Wei, G. W. (2018c). TODIM method for picture fuzzy multiple attribute decision making. Informatica, 29, 555-566. https://doi.org/10.15388/Informatica.2018.181

Wei, G. W., Alsaadi, F. E., Hayat, T., & Alsaedi, A. (2018a). Picture 2-tuple linguistic aggregation operators in multiple attribute decision making. Soft Computing, 22, 989-1002. https://doi.org/10.1007/s00500-016-2403-8

Wei, G. W., Alsaadi, F. E., Hayat, T., & Alsaedi, A. (2018b). Projection models for multiple attribute decision making with picture fuzzy information. International Journal of Machine Learning and Cybernetics, 9, 713-719. https://doi.org/10.1007/s13042-016-0604-1

Wei, G. W., & Gao, H. (2018). The generalized dice similarity measures for picture fuzzy sets and their applications. Informatica, 29, 107-124. https://doi.org/10.15388/Informatica.2018.160

Wei, Y., Qin, S., Li, X., Zhu, S., & Wei, G. (2019). Oil price fluctuation, stock market and macroeconomic fundamentals: Evidence from China before and after the financial crisis. Finance Research Letters, 30, 23-29. https://doi.org/10.1016/j.frl.2019.03.028

Wu, L. P., Wei, G. W., Gao, H., & Wei, Y. (2018). Some interval-valued intuitionistic fuzzy Dombi hamy mean operators and their application for evaluating the elderly tourism service quality in tourism destination. Mathematics, 6, 294. https://doi.org/10.3390/math6120294

Wu, Y. N., Wang, J., Hu, Y., Ke, Y. M., & Li, L. W. Y. (2018). An extended TODIM-PROMETHEE method for waste-to-energy plant site selection based on sustainability perspective. Energy, 156, 1-16. https://doi.org/10.1016/j.energy.2018.05.087

Xu, Z. S., & Yager, R. R. (2009). Intuitionistic and interval-valued intutionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group. Fuzzy Optimization and Decision Making, 8, 123-139. https://doi.org/10.1007/s10700-009-9056-3

Yang, W., Pang, Y. F., Shi, J. R., & Wang, C. J. (2018). Linguistic hesitant intuitionistic fuzzy decisionmaking method based on VIKOR. Neural Computing & Applications, 29, 613-626. https://doi.org/10.1007/s00521-016-2526-y

Ye, J. (2018). Fault diagnoses of hydraulic turbine using the dimension root similarity measure of singlevalued neutrosophic sets. Intelligent Automation and Soft Computing, 24, 1-8. https://doi.org/10.1080/10798587.2016.1261955

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-356. https://doi.org/10.1016/S0019-9958(65)90241-X

Zeng, S. Z., & Xiao, Y. (2018). A method based on topsis and distance measures for hesitant fuzzy multiple attribute decision making. Technological and Economic Development of Economy, 24, 969-983. https://doi.org/10.3846/20294913.2016.1216472

Zhai, Y. L., Xu, Z. S., & Liao, H. C. (2018). Measures of probabilistic interval-valued intuitionistic hesitant fuzzy sets and the application in reducing excessive Medical Examinations. IEEE Transactions on Fuzzy Systems, 26, 1651-1670. https://doi.org/10.1109/TFUZZ.2017.2740201

Zhang, H. Y., Wang, J. Q., & Chen, X. H. (2016). An outranking approach for multi-criteria decisionmaking problems with interval-valued neutrosophic sets. Neural Computing & Applications, 27, 615-627. https://doi.org/10.1007/s00521-015-1882-3

Zhao, H., You, J. X., & Liu, H. C. (2017). Failure mode and effect analysis using MULTIMOORA method with continuous weighted entropy under interval-valued intuitionistic fuzzy environment. Soft Computing, 21, 5355-5367. https://doi.org/10.1007/s00500-016-2118-x

Zhou, H., Wang, J. Q., & Zhang, H. Y. (2018). Multi-criteria decision-making approaches based on distance measures for linguistic hesitant fuzzy sets. Journal of the Operational Research Society, 69, 661-675. https://doi.org/10.1080/01605682.2017.1400780