The problem of classification of objects located in domain D ⊂ R2based on observations of random Gaussian fields with a factorized covariance function is considered. The first‐order asymptotic expansion for the expected error regret is presented. Obtained numerical results allow us to compare suggested expansion for some widely applicable models of spatial covariance function.
Statistinis klasifikavimas remiantis atsitiktinių Gauso laikų stebėjimais
Santrauka. Nagrinėjamas uždavinys apie objektų iš srities D C R2 klasifikavimą, remiantis atsitiktinių Gauso laukų stebėjimais. Pateikti asimptotiniai laukiamos paklaidos įverčiai. Atlikus skaitinio modeliavimo eksperimentą naujasis skleidinys lyginamas su kitais žinomais skleidiniais.
Šaltyte, J., & Dučinskas, K. (1999). Statistical classification based on observations of random Gaussian fields. Mathematical Modelling and Analysis, 4(1), 153-162. https://doi.org/10.3846/13926292.1999.9637120
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.