The approximations of the nonlinear heat transport problem are based on the finite volume (FM) and averaging (AM) methods [1,2]. This procedures allows reduce the nonlinear 2‐D problem for partial differential equation (PDE) to a initial‐value problem for a system of 2 nonlinear ordinary differential equations(ODE) of first order in the time t or to a initial‐value problem for one nonlinear ODE of first order with two nonlinear algebraic equations.
Netiesinio šilumos pernešimo plonose plokštelėse matematinis modeliaivimas
Santrauka. Darbe sprendžiamas netiesinis šilumos pernešimo uždavinys. Uždavinio specifika yra ta, kad šilumos pernešimas vyksta labai plonose plokštelėse, todėl nagrinėjamas vienmatis apibendrintas modelis. Ši redukcija atliekama baigtinių tūrių ir vidurkinimo metodais. Gautoji dviejų netiesinių paprastųjų diferencialinių lygčių sistema yra sprendžiama skaitiškai. Išnagrinėtas ir alternatyvus variantas, kai po redukcijos gaunama viena netiesinė paprastoji diferencialinė lygtis bei dvi papildomos algebrinės lygtys.
Buikis, A., & Kalis, H. (1999). The mathematical modelling of the nonlinear heat transport in thin plate. Mathematical Modelling and Analysis, 4(1), 44-50. https://doi.org/10.3846/13926292.1999.9637109
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.