The problem of linear discriminant analysis of an observation of Gaussian random field into one of two populations is considered. In this paper we analyze the performance of the plug‐in linear discriminant function, when unknown means are estimated from the training samples. The generalized least squares and the ordinary least squares estimators are used. Obtained asymptotic expansions for the expected error rate are compared numerically in the case of spherical models for population covariances.
Santrauka. Straipsnyje sprendžiamas atsitiktinio Gauso lauko stebėjimų tiesinės diskriminantinės analizės uždavinys dviejų klasių atveju. Gauti pirmos eilės asimptotiniai tikėtinos klasifikavimo klaidos skleidiniai atvejui, kai į Bajeso klasifikavimo taisyklę įstatome maksimalaus tikėtinumo bei empirinį vidurkių įverčius. Atliktas skaitinis asimptotinių klasifikavimo klaidų palyginimas tam tikrai kaimynystės schemai bei sferinei koreliacijų funkcijai.
Šaltyte, J., & Dučinskas, K. (2002). Comparison of two estimators of mean function in LDA of spatially correlated Gaussian data. Mathematical Modelling and Analysis, 7(1), 169-176. https://doi.org/10.3846/13926292.2002.9637189
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.