In this note we consider the mathematical model of the isothermal compressible fluid flow in an exterior domain O ⊂ R3. In order to solve this problem we apply a decomposition scheme and reduce the nonlinear problem to an operator equation with a contraction operator. After the decomposition the nonlinear problem splits into three linear problems: Neumann‐like problem, modified Stokes problem and transport equation. These linear problems are solved in weighted function spaces with detached asymptotics.
Spūdaus skysčio tekėjimo matematinis modelis
Santrauka. Šiame darbe išnagrinėtas spūdaus skysčio tekėjimo išorinėje srityje O ⊂ R3 matematinis modelis. Šios problemos sprendimui pritaikyta dekompozicijos schema, kuri leidžia netiesinį uždavinį suskaidyti į tris paprastesnius tiesinius uždavinius: Neimano tipo, modifikuotą Stokso ir transporto. Šių tiesinių uždavinių sprendinių ieškota specialiose svorinėse funkcijų erdvėse su atskirta asimptotika. Suformuluotos teoremos apie minėtų tiesinių ir netiesinio uždavinių sprendinio egzistencija ir vienatį. Pateikti įrodymu pagrindiniai žingsniai.
Leonavičiene, T., & Pileckas, K. (2002). The mathematical model of compressible fluid flow. Mathematical Modelling and Analysis, 7(1), 117-126. https://doi.org/10.3846/13926292.2002.9637184
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.