The asymptotic behavior of the solution of a parabolic dynamical boundary‐value problem in a periodically perforated domain is analyzed. The perforations, which are identical and periodically distributed, are of size ϵ. In the perforated domain we consider a heat equation, with a Dirichlet condition on the exterior boundary and a dynamical boundary condition on the surface of the holes. The limit equation, as ϵ ? 0, is a heat equation with extra‐terms coming from the influence of the non‐homogeneous dynamical boundary condition.
Paraboliniai uždaviniai su dinaminėmis kraštinėmis sąlygomis perforuotoje terpėje
Santrauka. Nagrinėjamas parabolinis uždavinys su dinaminėmis kraštinėmis sąlygomis periodiškai perforuotoje srityje. Analizuojamos šio uždavinio sprendinio asimptotinės savybės, kai mažas parametras yra perforacijos dydis, iš mikromodelio išvedamos matematinio makromodelio lygtys ir papildomosios sąlygos.
Timofte, C. (2003). Parabolic problems with dynamical boundary conditions in perforated media. Mathematical Modelling and Analysis, 8(4), 337-350. https://doi.org/10.3846/13926292.2003.9637235
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.