Institute of Mathematics , Latvian Academy of Sciences and University of Latvia , 1 Akademijas Square, Riga, LV‐1524, LATVIA E-mail: sharif@one.lv ; Transport and Telecommunication Institute , 1 Lomonosova str., Riga, LV‐1019, Latvia
Modelling many problems of mathematical physics, economy, statistics, actuary mathematics we obtain operational equations of the first kind. As a rule, these equations concern to ill-posed problems. There are some iterative methods for solution of such problems. In the present work, we consider the concrete iterative method and estimate its order of convergence without any additional conditions.
Vieno reguliarizavimo metodo konvergavimo greičio įvertis
Santrauka. Daugelio matematinės fizikos, ekonomikos, statistikos, draudimo matematikos uždavinių modeliavime gaunamos pirmojo tipo operatorinės lygtys. Kaip taisyklė tokios lygtys susiveda į nekorektiškus uždavinius. Literatūroje tokių uždavinių sprendimo radimui naudojami iteraciniai metodai. Šiame darbe nagrinėjamas konkretus iteracinis metodas ir nustatomas šio metodo konvergavimo greičio įvertis. Teoremos įrodomos nesinaudojant papildomomis sąlygomis, kurios buvo naudojamos ankstesniuose dabuose.
Guseinov, S., & Volodko, I. (2003). Convergence order of one regularization method. Mathematical Modelling and Analysis, 8(1), 25-32. https://doi.org/10.3846/13926292.2003.9637207
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.