iscous two‐fluid channel flows arise in different kinds of coating technologies. The corresponding mathematical models represent two‐dimensional free boundary value problems for the Navier‐Stokes equations. In this paper the solvability of the related stationary problems is discussed and computational results are presented. Furthermore, it is shown that depending on the flow parameters like viscosity or density ratios and on the fluxes there can happen nonexistence of steady‐state solutions. For other parameter sets the solution is even unique.
Apie dviejų tekančių kanale skysčių srauto egzistavimą ir vienatį
Santrauka. Dviejų, tekančių kanale, klampių skysčių srauto uždavinys iškyla taikant įvairias skirtingų rūšių paviršių padengimo technologijas. Atitinkamas matematinis modelis išreiškiamas dvimačių kraštinių uždavinių su laisvu paviršiumi Navje‐Stokso lygtims. Straipsnyje nagrinėjamas santykinai stacionaraus uždavinio išsprendžiamumas ir pateikiami skaičiavimo rezultatai. Be to parodoma, kad priklausomai nuo srovės parametrų kaip ir nuo klampumo ir tankio santykio stacionarūs sprendiniai gali neegzistuoti. Su kitais parametrais egzistuoja tiksliai vienas sprendinys.
Socolowsky, J. (2004). On the existence and uniqueness of two‐fluid channel flows. Mathematical Modelling and Analysis, 9(1), 67-78. https://doi.org/10.3846/13926292.2004.9637242
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.