The Sturm‐Liouville problem with various types of nonlocal integral boundary conditions is considered in this paper. In the first part of paper we investigate Sturm‐Liouville problem with two cases of nonlocal integral boundary conditions. We prove general properties of the eigenfunctions and eigenvalues for such problem in the complex case. In the second part we investigate real eigenvalues case. The spectrum depends of these problems on boundary condition parameters is analyzed. Qualitative behaviour of all eigenvalues subject to nonlocal boundary condition parameters is described.
Šturmo-Liuvilio uždavinys stacionariajam diferencialiniam operatoriui su įvairaus tipo nelokaliosiomis kraštinėmis sąlygomis
Šiame straipsnyje nagrinejamas Šturmo‐Liuvilio uždavinys su viena nelokaliaja integralinio tipo kraštine salyga. Pirmoje straipsnio dalyje tiriamas Šturmo‐Liuvilio uždavinys su dvieju tipu integraline nelokaliaja salyga. Irodytos tikriniu funkciju ir tikriniu reikšmiu bendrosios savybes komplesineje plokštumoje. Antroje dalyje plačiau ištirtas realiuju tikriniu reikšmiu atvejis. Straipsnyje nagrinejama kaip Šturmo‐Liuvilio uždavinio spektras priklauso nuo kraštiniu salygu parametru. Priklausomai nuo nelokaliuju kraštiniu salygu parametru, aprašytas kokybinis tikriniu reikšmiu pasiskirstymas.
Pečiulyte, S., Štikoniene, O., & Štikonas, A. (2005). Sturm‐Liouville problem for stationary differential operator with nonlocal integral boundary condition. Mathematical Modelling and Analysis, 10(4), 377-392. https://doi.org/10.3846/13926292.2005.9637295
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.