Various problems of electrical engineering lead to mathematical models being difference, differential or integral equations. In this paper some mathematical models in certain problems of electrical engineering are presented. Our considerations are restricted to the radiative heat transfer and density theory (Fredholm integral equations). Respecting time in current density problems we get integro‐differential equations or generally Volterra‐Predholm integral equations (heat‐conduction theory). The new numerical method for these equations is analysed.
Matematinis modeliavimas elektros inžinerijoje
Daugelio elektros inžinerijos problemų sprendimui tenka sudaryti matematinius modelius, kurie dažniausiai būna aprašomi skirtuminėmis, diferencialinėmis ar integralinėmis lygtimis. Šiame darbe apžvelgiami kai kurie modeliai, skirti konkrečių elektros inžinerijos uždavinių sprendimui. Apsiribojama šilumos perdavimo proceso su spinduliuote modeliavimu ir tankio pasiskirstymo teorija (Predholmo integralinės lygtys). Įvedus laiką, lygtys tankiui tampa integr‐diferencialinėmis arba Volteros‐Predholmo integralinėmis lygtimis. Darbe pateikiamas ir nagrinėjamas naujas skaitinis tokių lygčių sprendimo metodas.
Hacia, L. (2005). Mathematical modelling in electrical engineering. Mathematical Modelling and Analysis, 10(3), 257-274. https://doi.org/10.3846/13926292.2005.9637286
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.