The conservation laws governing the multiphase flows in porous media are often convection‐dominated and have a steep fronts that require accurate resolution. Standard discretization methods of the convection terms do not perform well for such problems. The main aim of this work is to analyze the use of upwind and high‐ resolution schemes in such cases. First, we use a first differential approximation method to perform a theoretical analysis of a standard upwind approximation and different time stepping schemes for the linear hyperbolic equations in 1‐ and 2D. Next, we present a popular approach to reduce the amount of numerical diffusion introduced by upwind approximation ‐ high‐resolution schemes. We compare our implementation of one of the recently proposed central‐upwind schemes against the upwind schemes on several test problems based on Buckley‐Leverett equation and discuss the results. Finally, a parallel version of central‐upwind scheme in 2D is presented. It was implemented using our C++ library of parallel arrays ‐ ParSol.
Starikovičius, V., Čiegis, R., & Jakušev, A. (2006). Analysis of upwind and high‐resolution schemes for solving convection dominated problems in porous media. Mathematical Modelling and Analysis, 11(4), 451-474. https://doi.org/10.3846/13926292.2006.9637330
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.