An analysis is performed to investigate the structure of the boundary layer stagnation‐point flow and heat transfer of a fluid through a porous medium over a stretching sheet. A scaling group of transformations is applied to get the invariants. Using the invariants, a third and a second order ordinary differential equations corresponding to the momentum and energy equations are obtained respectively. The equations are then solved numerically. It is found that the horizontal velocity increases with the increasing value of the ratio of the free stream velocity (ax) and the stretching velocity (ax). The temperature decreases in this case. At a particular point of the stretching sheet, the fluid velocity decreases or increases with the increase of the permeability of the porous medium when the free stream velocity is less or grater than the stretching velocity.
Layek, G. C., Mukhopadhyay, S., & Samad, S. A. (2006). Scaling group of transformations for boundary layer stagnation‐point flow through a porous medium towards a heated stretching sheet. Mathematical Modelling and Analysis, 11(2), 187-197. https://doi.org/10.3846/13926292.2006.9637312
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.