In an earlier paper, we derived the distribution of the number of photons detected in two-photon laser scanning microscopy when the counter has a dead period. We assumed a Poisson number of emissions, exponential waiting times, and an infinite time horizon, and used an equivalent inhomogeneous Poisson process formulation. We then used that result to improve image quality as measured by the signal-to-noise ratio. Here, we extend that study in two directions. First, we treat the finite-horizon case to assess the accuracy of the simpler infinite-horizon approximation. Second, we use a direct approach by conditioning on the Poisson count for the infinite-horizon case to derive several polynomial identities.
Simsek, B., & Iyengar, S. (2017). On Certain Mathematical Problems in Two-Photon Laser Scanning Microscopy. Mathematical Modelling and Analysis, 22(5), 587-600. https://doi.org/10.3846/13926292.2017.1336123
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.