Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania; Vilnius University Institute of Mathematics and Informatics, Akademijos 4, LT-08663 Vilnius, Lithuania
A detailed analysis of absorbing boundary conditions for the linear Schrodinger equation is presented in this paper. It is focused on absorbing boundary conditions that are obtained by using rational functions to approximate the exact transparent boundary conditions. Different strategies are investigated for the optimal selection of the coefficients of these rational functions, including the Pade approximation, the L2 norm approximations of the Fourier symbol, L2 minimization of a reflection coefficient, and two error minimization techniques for the chosen benchmark problems with known exact solutions. The results of computational experiments are given and a detailed comparison of the efficiency of these techniques is presented.
Bugajev, A., Čiegis, R., Kriauzienė, R., Leonavičienė, T., & Žilinskas, J. (2017). On the Accuracy of Some Absorbing Boundary Conditions for the Schrodinger Equation. Mathematical Modelling and Analysis, 22(3), 408-423. https://doi.org/10.3846/13926292.2017.1306725
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.