In this paper, we consider an inverse problem of coefficient identification for the Schrodinger equation from the observation data on the exterior boundary. Our aim is to detect the number, the location, the size and the shape of the coefficient with piecewise constant within a body. This problem is nonlinear and ill-posed, thus we should apply stable and elegant reconstruction algorithms in order to improve the corresponding approximation. We give several examples to show the viability of our proposed methods.
Liu, J.-C. (2017). Reconstruction Algorithms of an Inverse Coefficient Identification Problem for the Schrodinger Equation. Mathematical Modelling and Analysis, 22(3), 352-372. https://doi.org/10.3846/13926292.2017.1312580
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.