Laboratoire de Mecanique, Departement de Physique, Faculte de Sciences, Universite de Yaounde I, B.P. 812 Yaounde – Cameroon; Centre d’Excellence Africain des Technologies de l’Information et de la Communication (CETIC), Universite de Yaounde I, Yaounde, Cameroon
In this paper, we propose a new approach for obtaining explicit analytical approximations to the homoclinic or heteroclinic solutions of a general class of strongly nonlinear ordinary differential equations describing conservative singledegree-of-freedom systems. Through a simple and explicit change of the independent variable that we introduce, these equations are transformed to others for which the original homoclinic or heteroclinic solutions are mapped into periodic solutions that satisfy some boundary conditions. Recent simplified methods of harmonic balance can then be exploited to construct highly accurate analytic approximations to these solutions. Here, we adopt the combination of Newton linearization with the harmonic balance to construct the approximates in incremental steps, thereby proposing both appropriate initial approximates and increments that together satisfy the required boundary conditions. Three examples including a septic Duffing oscillator, a controlled mechanical pendulum and a perturbed KdV equations are presented to illustrate the great accuracy and simplicity of the new approach.
Yamgoue, S. B., Lekeufack, O. T., & Kofane, T. C. (2017). Harmonic Balance for Non-Periodic Hyperbolic Solutions of Nonlinear Ordinary Differential Equations. Mathematical Modelling and Analysis, 22(2), 140-156. https://doi.org/10.3846/13926292.2017.1276983
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.