A Fredholm integral equation of the second kind in L1([a, b], C) with a weakly singular kernel is considered. Sufficient conditions are given for the existence and uniqueness of the solution. We adapt the product integration method proposed in C0 ([a, b], C) to apply it in L1 ([a, b], C), and discretize the equation. To improve the accuracy of the approximate solution, we use different iterative refinement schemes which we compare one to each other. Numerical evidence is given with an application in Astrophysics.
Grammont, L., Ahues, M., & Kaboul, H. (2016). An Extension of the Product Integration Method to L1 with Applications in Astrophysics. Mathematical Modelling and Analysis, 21(6), 774-793. https://doi.org/10.3846/13926292.2016.1243590
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.