It is known that, under certain conditions, solutions of some ordinary differential equations of first, second or even higher order are asymptotic to polynomials as time goes to infinity. We generalize and extend some of the existing results to differential equations of non-integer order. Reasonable conditions and appropriate underlying spaces are determined ensuring that solutions of fractional differential equations with nonlinear right hand sides approach power type functions as time goes to infinity. The case of fractional differential problems with fractional damping is also considered. Our results are obtained by using generalized versions of GronwallBellman inequality and appropriate desingularization techniques.
Kassim, M. D., Furati, K. M., & Tatar, N.-E. (2016). Asymptotic Behavior of Solutions to Nonlinear Fractional Differential Equations. Mathematical Modelling and Analysis, 21(5), 610-629. https://doi.org/10.3846/13926292.2016.1198279
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.