The discrete-time periodic matrix equations are encountered in periodic state feedback problems and model reduction of periodic descriptor systems. The aim of this paper is to compute the generalized reflexive solutions of the general coupled discrete-time periodic matrix equations. We introduce a gradient-based iterative (GI) algorithm for finding the generalized reflexive solutions of the general coupled discretetime periodic matrix equations. It is shown that the introduced GI algorithm always converges to the generalized reflexive solutions for any initial generalized reflexive matrices. Finally, two numerical examples are investigated to confirm the efficiency of GI algorithm.
Hajarian, M. (2016). Gradient Based Iterative Algorithm to Solve General Coupled Discrete-Time Periodic Matrix Equations over Generalized Reflexive Matrices. Mathematical Modelling and Analysis, 21(4), 533-549. https://doi.org/10.3846/13926292.2016.1186119
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.