Share:


Log-tangent integrals and the Riemann zeta function

    Lahoucine Elaissaoui Affiliation
    ; Zine El-Abidine Guennoun Affiliation

Abstract

We show that integrals involving the log-tangent function, with respect to any square-integrable function on  , can be evaluated by the harmonic series. Consequently, several formulas and algebraic properties of the Riemann zeta function at odd positive integers are discussed. Furthermore, we show among other things, that the log-tangent integral with respect to the Hurwitz zeta function defines a meromorphic function and its values depend on the Dirichlet series , where .


 

Keyword : Riemann zeta function, Hurwitz zeta function, Apéry’s constant, Dirichlet series, log-tangent integrals, harmonic series

How to Cite
Elaissaoui, L., & Guennoun, Z. E.-A. (2019). Log-tangent integrals and the Riemann zeta function. Mathematical Modelling and Analysis, 24(3), 404-421. https://doi.org/10.3846/mma.2019.025
Published in Issue
Jun 6, 2019
Abstract Views
1102
PDF Downloads
808
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

V.S. Adamchik. A class of logarithmic integrals. Proc. ISSAC’97, pp. 1–8, 1997. https://doi.org/10.1145/258726.258736

R. Apéry. Irrationalité de ζ(2) et ζ(3). Astérisque, 61:11–13, 1978.

D.H. Bailey, J.M. Borwein and R. Girgensohn. Experimental evaluation of Euler sums. Experimental Mathematics, 3(1):17–30, 1994. https://doi.org/10.1080/10586458.1994.10504573

D. Borwein, J.M. Borwein and R. Girgensohn. Explicit evaluation of Euler sums. Proc. Edinburgh Math. Soc., 38(2):277–294, 1995. https://doi.org/10.1017/S0013091500019088

D.M. Bradley. A class of series acceleration formulae for Catalan’s constant. Ramanujan Journal, 3(2):159–173, 1999. https://doi.org/10.1023/A:1006945407723

H. Chen. Evaluations of some variant Euler sums. J. Int. Seq., 9, 2006.

J. Choi and H.M. Srivastava. Zeta and Q-Zeta functions and Associated Series and Integrals. Elsevier Insights, 2012. https://doi.org/10.1016/B978-0-12-385218-2.00002-5

L. Elaissaoui and Z.E. Guennoun. Evaluation of log-tangent integrals by series involving ζ(2n + 1). Int. Trans. Spec. Funct., 28(6):460–475, 2017. https://doi.org/10.1080/10652469.2017.1312366

L. Euler. Opera omnia. Teubner Berlin, 15(1), 1917.

C. Georghiou and A.N. Philippou. Harmonic sums and the Zeta function. Fibonacci Quart., 21:29–36, 1983.

I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Aca. Press Elsevier, 2007. (Translated from Russian by Scripta Technica)

A. Ivic. The Riemann Zeta-function. John Wiley and Sons, New York, 1985.

L.M. Navas, F.J. Ruiz and J.L. Varona. Old and new identities for Bernoulli polynomials via Fourier series. Inter. J. Mathe. Math. Sci., 2012. https://doi.org/10.1155/2012/129126

T. Rivoal. La fonction Zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs. C.R.A.S Paris, 331(4):267–270, 2000. https://doi.org/10.1016/S0764-4442(00)01624-4

J. Sáchez-Ruiz. Asymptotic formula for the quantum entropy of position in energy eigenstates. Phys. Lett. A., 226(1-2):7–13, 1997. https://doi.org/10.1016/S0375-9601(96)00911-5

E.T. Whittaker and G.N. Watson. A Course of Modern Analysis. Cambridge University Press, 1950.

W. Zudilin. One of the eight numbers ζ(5), ζ(7),..., ζ(17), ζ(19) is irrational. Mathematical Notes, 70(3-5):426–431, 2001. https://doi.org/10.1023/A:1012312315852