Department of Mathematics and Computer Sciences, FB3, Center for Industrial Mathematics (ZeTeM), University of Bremen, P. O. 330440, Bremen, D‐28334, Germany
Department of Mathematics and Computer Sciences, FB3, Center for Industrial Mathematics (ZeTeM), University of Bremen, P. O. 330440, Bremen, D‐28334, Germany
The moving‐boundary methodology with Stefan‐ and Signorini‐type boundary conditions is used for the modelling of the thermal cutting of metals by a plasma beam. We model the problem as a coupled system of equations, the heat conduction equation with Signorini‐type boundary conditions for calculating the temperature distribution in the workpiece, Stefan‐type boundary condition for computing the unknown domain geometry and ODEs which account for the solid‐solid phase transformations occurring due to the heat treatment of the material. For latter purpose a general model describing the kinetics of phase transformation is used. Finally, a model for computing the heat flux density absorbed by the cutting interface is derived using the data of emitted heat and radius of the plasma beam.
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.