Branch and bound (BnB) is a general algorithm to solve optimization problems. We present a template implementation of the BnB paradigm. A BnB template is implemented using C++ object oriented paradigm. MPI is used for underlying communications. A paradigm of domain decomposition (data parallelization) is used to construct a parallel algorithm. To obtain a better load balancing, the BnB template has the load balancing module that allows the redistribution of search spaces among the processors at run time. A parallel version of user's algorithm is obtained automatically. A new derivative‐free global optimization algorithm is proposed for solving nonlinear global optimization problems. It is based on the BnB algorithm and its implementation is done by using the developed BnB algorithm template library. The robustness of the new algorithm is demonstrated by solving a selection of test problems.
Baravykaitė, M., & Čiegis, R. (2007). An implementation of a parallel generalized branch and bound template. Mathematical Modelling and Analysis, 12(3), 277-289. https://doi.org/10.3846/1392-6292.2007.12.277-289
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.