We develop a mathematical model for the dynamics of malaria with a varying population for which new individuals are recruited through immigration and births. In the model, we assume that non‐immune travellers move to endemic regions with sprays, smear themselves with jelly that is repellent to mosquitoes on arrival in malarious regions, others take long term antimalarials, and pregnant women and infants receive full treatment doses at intervals even when they are not sick from malaria (commonly referred to as intermittent preventive therapy). We introduce more features that describe the dynamics of the disease for the control strategies that protect the above vulnerable groups. The model analysis is done and equilibrium points are analyzed to establish their local and global stability. The threshold of the disease, the control reproduction number, is established for which the disease can be eliminated.
Tumwiine, J., Mugisha, J. Y., & Luboobi, L. S. (2008). Threshold and stability results for a malaria model in a population with protective intervention among high‐risk groups. Mathematical Modelling and Analysis, 13(3), 443-460. https://doi.org/10.3846/1392-6292.2008.13.443-460
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.