Eigenvalue problems of the form x″ = -λf (x+) + μg (x-), x (0) = 0, x (1) = 0 are considered, where x+ and x− are respectively the positive and the negative parts of x. We are looking for (λ, μ) such that the problem has a nontrivial solution. This problem generalizes the famous Fučik problem for piece‐wise linear equations. In order to show that nonlinear Fučik spectra may differ essentially from the classical ones, we consider piece‐wise linear functions f (x) and g (x). We show that the first branches of the Fučik spectrum may contain bounded components.
Gritsans, A., & Sadyrbaev, F. (2008). On nonlinear fučik type spectra. Mathematical Modelling and Analysis, 13(2), 203-210. https://doi.org/10.3846/1392-6292.2008.13.203-210
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.