A grid approximation of a boundary value problem is considered for a singularly perturbed parabolic convection‐diffusion equation. For this problem, upwind difference schemes on the well‐known piecewise‐uniform meshes converge ϵ‐uniformly in the maximum discrete norm at the rate O(N−1ln N + N0−1), where N + 1 and N0+ 1 are the number of mesh points in x and t respectively; the number of nodes in the x‐mesh before the transition point (the point where the step‐size changes) and after it are the same. Under the condition N Â N0 this scheme converges at the rate O (P−1/2ln P); here P = (N + 1)(N0+ 1) is the total number of nodes in the piecewise‐uniform mesh. Schemes on piecewise‐uniform meshes are constructed that are optimal with respect to the convergence rate. These schemes converge ϵ‐uniformly at the rate O(P−1/2ln1/2P). In optimal meshes based on widths that are similar to Kolmogorov's widths, the ratio of mesh points in x and t is of O((ϵ + ln−1P)−1). Under the condition ϵ = o (1), most nodes in such a mesh in x are placed before the transition point.
Shishkin, G. (2008). Optimal difference schemes on piecewise‐uniform meshes for a singularly perturbed parabolic convection‐diffusion equation. Mathematical Modelling and Analysis, 13(1), 99-112. https://doi.org/10.3846/1392-6292.2008.13.99-112
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.