We compare four different heuristic methods for polynomial regression model induction. The methods are very different in their approaches. Our main concern in this study is in the differences of candidate model spaces the methods deal with (completely predefined versus non‐predefined), as well as search strategies used. We investigate the advantages and disadvantages of the approaches represented by the methods in terms of predictive error, complexity of the induced models and required computational resources. For empirical comparisons, we use twelve test problems.
Jekabsons, G., & Lavendels, J. (2008). A comparison of heuristic methods for polynomial regression model induction. Mathematical Modelling and Analysis, 13(1), 17-27. https://doi.org/10.3846/1392-6292.2008.13.17-27
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.