This paper presents an iterative method based on a self‐adjoint and m‐accretive splitting for the numerical treatment of the steady state neutron transport equation. Theoretical analysis shows that this method converges unconditionally to the unique solution of the transport equation. The convergence of the method is numerically illustrated and compared with the standard Source Iteration method and multigrid method on sample problems in slab geometry and in two dimensional space.
Awono, O., & Tagoudjeu, J. (2009). A splitting iterative method for solving the neutron transport equation. Mathematical Modelling and Analysis, 14(3), 271-289. https://doi.org/10.3846/1392-6292.2009.14.271-289
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.