We propose a new a posteriori rule for choosing the regularization parameter α in (iterated) Tikhonov method for solving linear ill‐posed problems in Hilbert spaces. We assume that data are noisy but noise level δ is given. We prove that (iterated) Tikhonov approximation with proposed choice of α converges to the solution as δ → 0 and has order optimal error estimates. Under certain mild assumption the quasioptimality of proposed rule is also proved. Numerical examples show the advantage of the new rule over the monotone error rule, especially in case of rough δ.
Raus, T., & Hämarik, U. (2009). New rule for choice of the regularization parameter in (iterated) tikhonov method. Mathematical Modelling and Analysis, 14(2), 187-198. https://doi.org/10.3846/1392-6292.2009.14.187-198
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.