This report treats numerical methods for highly nonlinear least squares problems for which procedural and rounding errors are unavoidable, e.g. those arising in the development of various nonlinear system identification techniques based on input‐output representation of the model such as training of artificial neural networks. Let F be a Frechet‐differentiable operator acting between Hilbert spaces H1 and H2 and such that the range of its first derivative is not necessarily closed. For solving the equation F(x) = 0 or minimizing the functional f(x) = ½ ‖F(x)‖2 , x H1, two‐parameter iterative regularization methods based on the Gauss‐Newton method under certain condition on a test function and the required solution are developed, their computational aspects are discussed and a local convergence theorem is proved.
Kangro, I., & Vaarmann, O. (2009). Some iterative regularized methods for highly nonlinear least squares problems. Mathematical Modelling and Analysis, 14(2), 179-186. https://doi.org/10.3846/1392-6292.2009.14.179-186
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.