We deal with the numerical scheme for the Liouville Master Equation (LME) of a kind of Piecewise Deterministic Processes (PDP) with memory, analysed in [2]. The LME is a linear system of hyperbolic PDEs, written in non‐conservative form, with non‐local boundary conditions. The solutions of that equation are time dependent marginal distribution functions whose sum satisfies the total probability conservation law. In [2] the convergence of the numerical scheme, based on the Courant‐Isaacson‐Rees jointly with a direct quadrature, has been proved under a Courant‐Friedrichs‐Lewy like (CFL) condition. Here we show that the numerical solution is monotonic under a similar CFL condition. Moreover, we evaluate the conservativity of the total probability for the calculated solution. Finally, an implementation of a parallel algorithm by using the MPI library is described and the results of some performance tests are presented.
Annunziato, M. (2009). A finite difference method for piecewise deterministic processes with memory. II. Mathematical Modelling and Analysis, 14(2), 139-158. https://doi.org/10.3846/1392-6292.2009.14.139-158
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.