A conservative finite‐difference scheme for numerical solution of the Gross‐Pitaevskii equation is proposed. The scheme preserves three invariants of the problem: the L2 norm of the solution, the impulse functional, and the energy functional. The advantages of the scheme are demonstrated via several numerical examples in comparison with some other well‐known and widely used methods. The paper is organized as follows. In Section 2 we consider three main conservation laws of GPE and derive the evolution equations for first and second moments of a solution of GPE. In Section 3 we define the conservative finite‐difference scheme and prove the discrete analogs of conservation laws. The remainder of Section 3 consists of a brief description of other finite‐difference schemes, which will be compared with the conservative scheme. Section 4 presents the results of numerical solutions of three typical problems related to GPE, obtained by different methods. Comparison of the results confirms the advantages of conservative scheme. And finally we summarize our conclusions in Section 5.
Trofimov, V. A., & Peskov, N. (2009). Comparison of finite‐difference schemes for the Gross‐Pitaevskii equation. Mathematical Modelling and Analysis, 14(1), 109-126. https://doi.org/10.3846/1392-6292.2009.14.109-126
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.