A popular class of methods for solving weakly singular integral equations is the class of piecewise polynomial collocation methods. In order to implement those methods one has to compute exactly certain integrals that determine the linear system to be solved. Unfortunately those integrals usually cannot be computed exactly and even when analytic formulas exist, their straightforward application may cause unacceptable roundoff errors resulting in apparent instability of those methods in the case of highly nonuniform grids. In this paper fully discrete analogs of the collocation methods, where integrals are replaced by quadrature formulas, are considered, corresponding error estimates are derived.
Kangro, R., & Kangro, I. (2009). On fully discrete collocation methods for solving weakly singular integral equations. Mathematical Modelling and Analysis, 14(1), 69-78. https://doi.org/10.3846/1392-6292.2009.14.69-78
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.