In this paper, sufficient conditions are established for the existence of almost periodic solutions for system of impulsive integro‐differential neural networks. Our approach is based on the estimation of the Cauchy matrix of linear impulsive differential equations. We shall employ the contraction mapping principle as well as Gronwall‐Bellman's inequality to prove our main result.
The research of Gani Tr. Stamov is partially supported by the Grand 100ni087–16 from Technical University–Sofia
Stamov, G. T., & Alzabut, J. O. (2010). Almost periodic solutions of impulsive integro‐differential neural networks. Mathematical Modelling and Analysis, 15(4), 505-516. https://doi.org/10.3846/1392-6292.2010.15.505-516
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.