In this paper, first, by using the diagonally compensated reduction and incomplete Cholesky factorization methods, we construct a constraint preconditioner for solving symmetric positive definite linear systems and then we apply the preconditioner to solve the Helmholtz equations and Poisson equations. Second, according to theoretical analysis, we prove that the preconditioned iteration method is convergent. Third, in numerical experiments, we plot the distribution of the spectrum of the preconditioned matrix M−1A and give the solution time and number of iterations comparing to the results of [5, 19].
Huang, Z.-H., & Huang, T.-Z. (2010). A constraint preconditioner for solving symmetric positive definite systems and application to the helmholtz equations and poisson equations. Mathematical Modelling and Analysis, 15(3), 299-311. https://doi.org/10.3846/1392-6292.2010.15.299-311
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.