We explore questions related to the aggregation operators and aggregation of fuzzy sets. No preliminary knowledge of the aggregation operators theory and of the fuzzy sets theory are required, because all necessary information is given in Section 2. Later we introduce a new class of γ‐aggregation operators, which “ignore” arguments less than γ. Due to this property γ‐aggregation operators simplify the aggregation process and extend the area of possible applications. The second part of the paper is devoted to the generalized aggregation problem. We use the definition of generalized aggregation operator, introduced by A. Takaci in [7], and study the pointwise extension of a γ‐agop.
Lebedinska, J. (2010). γ‐Agregation operators and some aspects of generalized aggregation problem. Mathematical Modelling and Analysis, 15(1), 83-96. https://doi.org/10.3846/1392-6292.2010.15.83-96
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.