We consider regularization of linear ill‐posed problem Au = f with noisy data fδ, ¦fδ - f¦≤ δ . The approximate solution is computed as the extrapolated Tikhonov approximation, which is a linear combination of n ≥ 2 Tikhonov approximations with different parameters. If the solution u* belongs to R((A*A)n), then the maximal guaranteed accuracy of Tikhonov approximation is O(δ2/3) versus accuracy O(δ2n/(2n+1)) of corresponding extrapolated approximation. We propose several rules for choice of the regularization parameter, some of these are also good in case of moderate over‐ and underestimation of the noise level. Numerical examples are given.
Hämarik, U., Palm, R., & Raus, T. (2010). Extrapolation of Tikhonov regularization method. Mathematical Modelling and Analysis, 15(1), 55-68. https://doi.org/10.3846/1392-6292.2010.15.55-68
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.