In this paper we develop and validate mathematical models and numerical algorithms for the heat transfer simulation in composite materials. The main features of the problem deal with the dependence of the heat source on the solution, discontinuous diffusion coefficients and nonlinear convection and radiation boundary conditions. The differential problem is approximated by the finite volume discrete scheme. It is proved that for a sufficiently small parameter, which defines the dependence of the source term on the solution, the discrete problem has a unique solution which converges to the solution of the differential problem. Linearization of the nonlinear problem is done by using the Picard method and the convergence of the iterations is proved. Results of numerical experiments are presented.
Čiegis, R., Jankevičiūtė, G., & Suboč, O. (2010). Numerical simulation of the heat conduction in composite materials. Mathematical Modelling and Analysis, 15(1), 9-22. https://doi.org/10.3846/1392-6292.2010.15.9-22
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.