This paper is concerned with oscillations of numerical solutions for the nonlinear delay differential equation of population dynamics. The equation proposed by Mackey and Glass for a ”dynamic disease” involves respiratory disorders and its solution resembles the envelope of lung ventilation for pathological breathing, called Cheyne-Stokes respiration. Some conditions under which the numerical solution is oscillatory are obtained. The properties of non-oscillatory numerical solutions are investigated. To verify our results, we give numerical experiments.
Gao, J., Song, M., & Liu, M. (2011). Oscillation analysis of numerical solutions for nonlinear delay differential equations of population dynamics. Mathematical Modelling and Analysis, 16(3), 365-375. https://doi.org/10.3846/13926292.2011.601768
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.