Institute of Mathematics and Computer Science, University of Latvia, Raina bulvāris 29, LV-1459 Rīga, Latvija; Faculty of Physics and Mathematics, University of Latvia, Zellu ielā 8, LV-1002 Rīga, Latvija
Institute of Mathematics and Computer Science, University of Latvia, Raina bulvāris 29, LV-1459 Rīga, Latvija; Faculty of Physics and Mathematics, University of Latvia, Zellu ielā 8, LV-1002 Rīga, Latvija
This paper is concerning with the 1-D initial–boundary value problem for the hyperbolic heat conduction equation. Numerical solutions are obtained using two discretizations methods – the finite difference scheme (FDS) and the difference scheme with the exact spectrum (FDSES). Hyperbolic heat conduction problem with boundary conditions of the third kind is solved by the spectral method. Method of lines and the Fourier method are considered for the time discretization.
Finite difference schemes with central difference and exact spectrum are analyzed. A novel method for solving the discrete spectral problem is used. Special matrix with orthonormal eigenvectors is formed. Numerical results are obtained for steel quenching problem in the plate and in the sphere with holes. The hyperbolic heat conduction problem in the sphere with holes is reduced to the problem in the plate. Some examples and numerical results for two typical problems related to hyperbolic heat conduction equation are presented.
Kalis, H., & Buikis, A. (2011). Method of lines and finite difference schemes with the exact spectrum for solution the hyperbolic heat conduction equation. Mathematical Modelling and Analysis, 16(2), 220-232. https://doi.org/10.3846/13926292.2011.578677
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.