A Stefan-type problem is considered. This is an initial-boundary value problem on a composite domain for a parabolic reaction-diffusion equation with a moving interface boundary. At the moving boundary between the two subdomains, an interface condition is prescribed for the solution of the problem and its derivatives. A finite difference scheme is constructed that approximates the initial-boundary value problem. An iterative Newton-type method for the solution of the difference scheme and a numerical method for the analysis of the errors of the computed discrete solutions are both developed.
Shishkin, G., Shishkina, L., & Cronin, K. (2011). A numerical method for a stefan-type problem. Mathematical Modelling and Analysis, 16(1), 119-142. https://doi.org/10.3846/13926292.2011.562930
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.