Vilnius Gediminas Technical University, Saultekio al. 11, LT-10223 Vilnius, Lithuania; Mykolas Romeris University, Ateities st. 20, LT-08303 Vilnius, Lithuania
We consider coupled nonlinear equations modelling a family of travelling wave solutions. The goal of our work is to show that the method of internal averaging along characteristics can be used for wide classes of coupled non-linear wave equations such as Korteweg-de Vries, Klein – Gordon, Hirota – Satsuma, etc. The asymptotical analysis reduces a system of coupled non-linear equations to a system of integro – differential averaged equations. The averaged system with the periodical initial conditions disintegrates into independent equations in non-resonance case. These equations describe simple weakly non-linear travelling waves in the non-resonance case. In the resonance case the integro – differential averaged systems describe interaction of waves and give a good asymptotical approximation for exact solutions.
Krylovas, A., & Kriauzienė, R. (2011). Asymptotical analysis of some coupled nonlinear wave equations. Mathematical Modelling and Analysis, 16(1), 97-108. https://doi.org/10.3846/13926292.2011.560618
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.