We study the sequence of nontrivial zeros of the Riemann zeta-function with respect to sequences of zeros of other related functions, namely, the Hurwitz zeta-function and the derivative of Riemann's zeta-function. Finally, we investigate connections of the nontrivial zeros with the periodic zeta-function. On the basis of computation we derive several classifications of the nontrivial zeros of the Riemann zeta-function and stateproblems which mightbe ofinterestfor abetter understanding of the distribution of those zeros.
Garunkštis, R., & Steuding, J. (2011). Questions around the nontrivial zeros of the Riemann zeta-function. Computations and classifications. Mathematical Modelling and Analysis, 16(1), 72-81. https://doi.org/10.3846/13926292.2011.560616
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.