Istanbul Technical University Department of Mathematics, 34469 Maslak, Istanbul, Turkey; Namk Kemal University Department of Mathematics, 59030 Tekirdag, Turkey
In this work, we investigate a linear completely nonhomogeneous nonlocal multipoint problem for an m-order ordinary differential equation with generally variable nonsmooth coefficients satisfying some general properties such as p-integrability and boundedness. A system of m + 1 integro-algebraic equations called the special adjoint system is constructed for this problem. Green's functional is a solution of this special adjoint system. Its first component corresponds to Green's function for the problem. The other components correspond to the unit effects of the conditions. A solution to the problem is an integral representation which is based on using this new Green's functional. Some illustrative implementations and comparisons are provided with some known results in order to demonstrate the advantages of the proposed approach.
Ozen, K., & Orucoglu, K. (2012). A representative solution to m-order linear ordinary differential equation with nonlocal conditions by green’s functional concept. Mathematical Modelling and Analysis, 17(4), 571-588. https://doi.org/10.3846/13926292.2012.709471
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.