In this paper we develop and analyze an implicit fully discrete local discontinuous Galerkin (LDG) finite element method for a time-fractional Zakharov–Kuznetsov equation. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. We show that our scheme is unconditional stable and L2 error estimate for the linear case with the convergence rate through analysis.
Ren, Z., Wei, L., He, Y., & Wang, S. (2012). Numerical analysis of an implicit fully discrete local discontinuous Galerkin method for the fractional Zakharov–Kuznetsov equation. Mathematical Modelling and Analysis, 17(4), 558-570. https://doi.org/10.3846/13926292.2012.708675
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.