The present investigation is concerned with the study of heat and mass transfer characteristics on MHD boundary layer flow of an electrically conducting micropolar fluid over a non-isothermal stretching sheet embedded in a porous medium of variable thermal conductivity by applying prescribed heat flux for the heating processes. The thermal boundary layer equation takes into account of Ohmic dissipation due to transverse magnetic and electric fields. The governing system of partial differential equations is transformed into a system of non-linear ordinary differential equations using similarity transformation. The transformed non-linear coupled differential equations are linearized by quasi-linearization method and then solved very efficiently by finite-difference method. Attention has been focused to study the effects of various physical parameters on velocity, temperature and concentration in the boundary layer. Numerical data for the local skin friction coefficient, surface temperature and surface solutal concentration have also been tabulated for various parametric conditions.
Pal, D., & Chatterjee, S. (2012). MHD mixed convection stagnation-point flow of a micropolar fluid in a porous medium towards a heated stretching sheet with thermal radiation. Mathematical Modelling and Analysis, 17(4), 498-518. https://doi.org/10.3846/13926292.2012.706653
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.