We study, in the setting of a real Hilbert space H, the asymptotic behavior of trajectories of the second-order dissipative dynamical system with linear and gradient-driven nonlinear dampingwhere λ > 0 and f, Φ: H → R are two convex differentiable functions. It is proved that if Φ is coercive and bounded from below, then the trajectory converges weakly towards a minimizer of Φ. In particular, we state that under suitable conditions, the trajectory strongly converges to the minimizer of Φ exponentially or polynomially.
Wu, Y., & Xue, X. (2013). Asymptotics for a dissipative dynamical system with linear and gradient-driven damping. Mathematical Modelling and Analysis, 18(5), 654-674. https://doi.org/10.3846/13926292.2013.868842
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.