Department of Mathematics, Istanbul Technical University Maslak, 34469 Istanbul, Turkey; Department of Mathematics, Namk Kemal University Degirmenalt, 59030 Tekirdag, Turkey
In this work, we investigate a sequence of approximations converging to the existing unique solution of a multi-point boundary value problem(BVP) given by a linear fourth-order ordinary differential equation with variable coeffcients involving nonlocal integral conditions by using reproducing kernel method(RKM). Obtaining the reproducing kernel of the reproducing kernel space by using the original conditions given directly by RKM may be troublesome and may introduce computational costs. Therefore, in these cases, initially considering more admissible conditions which will allow the reproducing kernel to be computed more easily than the original ones and then taking into account the original conditions lead us to satisfactory results. This analysis is illustrated by a numerical example. The results demonstrate that the method is still quite accurate and effective for the cases with both derivative and integral conditions even if the accuracy is less compared to the cases with just derivative conditions.
Ozen, K., & Orucoglu, K. (2013). Approximate solution to a multi-point boundary value problem involving nonlocal integral conditions by reproducing kernel method. Mathematical Modelling and Analysis, 18(4), 529-536. https://doi.org/10.3846/13926292.2013.840867
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.